Interferential Current (IFC)

Historical Background
-intro. by Dr. Német in Vienna in the early 1950’s
-he wanted to overcome the problems of discomfort caused by low-frequency currents, while maintaining their claimed therapeutic effect
-its intro. coincided with arrival of some powerful drugs, and on top of that, electrotherapy was considered as a palliative form of treatment
- it disappeared until late 1960s and 1970s when work on pain mechanism by Melzak/Wall showed that pain could be d by stimulating primary afferent neurons

Theory of IFC
-definition: the transcutaneous application of alternating medium-frequency electrical currents, amplitude modulated at low frequency for therapeutic purposes

- medium frequency A + medium frequency B = low (therapeutic) frequency C

-Current A: f_1 (this current is set on the machine, thus called “intrinsic/carrier frequency”)
-Current B: f_2 (same amplitude, but slightly higher frequency; therapist sets this one)
-as you can see, current B falls alternately into and out of step with current A
(∴ alternately reinforcing it at some points, and weakening it at others!)
-resultant waveform: sinusoidal, with frequency F
-∴ $F = f_2 - f_1$
-as can be seen, the amplitude of F (Current C) is NOT constant
-this we call a beat frequency ⇒ current C, a sine wave of frequency F, is said to be
amplitude modulated by $f_2 - f_1$

But why use 2 medium frequency currents???
-medium frequency currents ⇒ associated with a lower skin resistance (impedance),
thus more comfortable than low frequency currents
-∴ using a medium frequency, a more tolerable penetration of current through the
skin is possible

Practical Applications of IFC
-in the clinic, f_1 is fixed on the machine, usually @ 4 000 Hz (2 000Hz and 6000Hz also available)

-f_2 would be variable from 4 001 Hz to 4 150 Hz (why is it better to have f_2 “swing”
within a range of frequencies? Limits accommodation and habituation to current)
-∴ $F = f_2 - f_1$ ranges from 1 Hz to 150 Hz (the frequency swing is also referred to as
spectrum or sweep)

-traditional method of applying IFC ⇒ 4 electrodes supplied by two channels
-some machines have a balance control to allow the output of one channel to be increased while decreasing the other

-bipolar (premodulated) mode can use only two electrodes because the two medium frequency currents are added inside the machine to produce the low freq. output!

-disadv. of bipolar mode: there is more sensory stimulation, since the low freq. current is already produced by the machine, and has to go through the skin unpleasant

Physiological Effects of IFC

1) Relief of Pain
- important because pain produces spasm, unnatural movement, and production of more strain.
- set F at 80-100Hz analgesic effect with a vasodilatory effect on the tissues.
*IFC is not effective in post-traumatic pain in the acute stages!! It is effective in cases of chronic pain with or without swelling.

2) Reduction of Swelling
- important because organization of the exudate leads to the formation of adhesions and impairment of function
- set F at 1-30Hz causes electroporation (increased permeability of the cell membrane, which helps ion movement to and from cells)
 - causes ↑ in venous and lymphatic flow, and ↑ tone of tissues and vessels which aid in the relief of edema
- progress Rx by setting F at 1-10Hz causes vasodilation, and has a vigorous pumping effect which will ↑ the physiologic mechanisms for the absorption of the exudate.

Indirectly, IFC promotes healing and helps in the restoration of function!

Types of Electrodes

1) Plate Electrodes
plates made of conducting rubber which are comfortable and long lasting
-larger plates give more comfortable treatment and deeper effect
-smaller plates are used for a localized effect, but this effect is more superficial
-plates are attached to the patient by means of straps or bandages
-be sure to have good contact of the plate with the patient • allows for more pleasant treatment and greater tolerance of current

Covering: -the electrodes must be fully covered with absorbent material
 -Spontex has been found to be very effective
 -coverings should be soaked in water or a solution of bicarbonate of soda to † conduction and allow a more comfortable contact with skin
 -the coverings must be kept clean and washed thoroughly and dried after use

2) Vacuum Electrodes
-the IFC unit is plugged into a vacuum unit => a rubber suction cup connected to a machine capable of producing a vacuum
-they’re really plate electrodes kept in position by a vacuum instead of bandaging
-around the neck of the cup is a rubber collar covering a small hole
-by lifting the collar, air is let into the cup, thus allowing the electrode to be moved while the vacuum is in operation
-do not try and tug off the electrode from the patient without releasing the vacuum => discomfort and bruising may result!
-place wet sponges in the cups and moisten the edges of the cups for better adherence
-the suction should not be constant => uncomfortable and causes bruising
-it may be pulsed and adjusted to increase and decrease at a desired speed
-vacuum electrodes are excellent for treating flat smooth areas => e.g. back or a plump knee

-not ideal for hairy areas => can’t get an airtight seal
3) Combined Electrodes
-all four contacts are embedded in some insulating material and can be applied as one pad
-there are different sizes (small, medium and large) for different surfaces to be treated
-limited by the low intensity of current that can be tolerated \(\Rightarrow \) general effect is small
-if possible, use larger separate plate electrodes!!

Intensity of Treatment
-use an intensity of current which produces a strong but comfortable prickling without a muscular contraction
-steps to follow: 1) \(\uparrow \) current until the patient feels a definite prickling, and leave for one minute for it to decrease

2) \(\uparrow \) current again until the patient reports a slight muscular contraction, then decrease until contraction stops
-may teach the patient to increase intensity periodically in order to obtain longer lasting pain relief

Duration of Treatment
-IFC usually applied for 10-15 minutes
- treatment at a normal intensity should not be given to one area for longer than 20 minutes
- if more than one area is to be treated → total time should not exceed 30 min.
too long a Rx makes pt. unacceptably tired later in the day!

Frequency of Treatment
-in most cases, treatment every other day (i.e. 3x/wk.) is ideal
- treatment less than twice/week is usually a waste of time
- a course of 12 treatments is given

Electrode Placement:
- painful area (86.4%)
- spinal nerve root (53%)
- peripheral nerve (26%)
- trigger point (10%)
- acupuncture point (5%)

*Percentages denote responses of therapist when asked about IFC electrode placement for cases of low back pain.

Before applying IFC, ask yourself the following:

1) What do I hope to achieve?
2) How can this be done?
3) What frequency would be most effective?
4) Should 2 or 4 electrodes be used?
5) Where exactly are the electrodes to be placed?
6) How long a treatment should be given?

Contraindications
1) Arterial disease
 - the stimulatory effect of the current could produce emboli

2) Deep Vein Thrombosis
 - in the acute phase, it is possible to dislodge the thrombi or increase the inflammation of the phlebitis
3) Infective conditions
-could spread the infection or exacerbate due to the stimulatory effects of the current

4) Pregnant Uterus
-not safe for fetus
-may however use for S.I. joint strain during pregnancy if IFC placed superficially over S.I. ligaments

5) Danger of haemorrhage
-stimulating effect can cause an ↑ in bleeding

6) Malignant tumors
-direct stimulation of tumor is CI, but referred pain from cancer or metastasis can be treated

7) Artificial pacemakers
-a demand unit must sense the electrical activity of the heart, thus avoid an electric device that may interfere with it

8) Large open wounds
-these will cause concentration of the current and distortion of the IF field

9) Dermatological conditions
-IFC may exacerbate any dermatological condition in the area being treated

Current Research

1) Minder et al.
 Interferential therapy: lack of effect upon experimentally induced delayed onset muscle soreness
 Clin Physiol & Func Im (2002) 339-347

2) Johnson et al.
 A single-blind placebo-controlled investigation into the analgesic effects of interferential currents on experimentally induced ischaemic pain in healthy subjects
 Clin Physiol & Func Im (2002) 187-196
3) Hurley et al.
 Interferential therapy electrode placement technique in acute low back pain: a
 preliminary investigation
 Arch Phys Med Rehabil (2001) 82, 485-93

4) Watson, T
 The role of electrotherapy in contemporary physiotherapy practice

5) Johnson et al.
 A double blind placebo controlled investigation into the analgesic effects
 of interferential current (IFC) and transcutaneous electrical nerve
 stimulation (TENS) on cold-induced pain in healthy subjects
 Physiotherapy Theory and Practice (1999) 15, 217-233

6) Olson et al.
 The effects of TENS and Interferential Current on cutaneous blood flow
 in healthy subjects
 Physiotherapy Canada (1999) 51 (1), 27-31

7) Fourie et al.
 Stimulation of bone healing in new fractures of the tibial shaft using
 interferential currents
 Physiotherapy Research International (1997) 2 (4), 255-268